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ABSTRACT

Rephotography is the process of recreating a historic photograph by finding the
exact pose and ideally the exact camera parameters to then take a picture from the
same spot. The original and new images can be used to document the passage of
time and the changes which a static scene has undergone, for instance by blend-
ing the two images together. Traditionally, the exercise is carried out by photog-
raphers via careful examination of the current camera picture and comparing it
with the original image, gradually moving the camera until an optimal registration
is achieved. Besides being very laborious, this approach is also quite error-prone,
motivating the desire for computerised assistance.
The ubiquity of camera-enabledmobile deviceswhich—contrarily to cameras—

canbeprogrammed allows such assistance tobeprovided, but fewaids are available.
Two existingmobile applications simplify the procedure, yet still the photographer
is required to determine the necessary motion on their own. This thesis presents
an attempt to reproduce a more sophisticated system which was prototyped for a
laptop with connected camera as a mobile application. This approach makes use
of image processing in order to tell the user how tomove the camera to recover the
original viewpoint.
The theoretical and practical challenges in computing a necessarymotion are ex-

plored and the system implemented as an iOS application. Adetailed evaluation of
the results is performed, concluding that the reproductionwas partially successful,
but some aspects of the pose recovery require further work.
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ZUSAMMENFAS SUNG

Refotografie bezeichnet das Wiederfinden von Aufnahmepose und Kamerapara-
metern einer möglicherweise historischen Fotografie, um eine Aufnahme vom sel-
ben Standort aus zu machen. Das Original und das neue Bild können verwen-
det werden, um Veränderungen einer Szene über einen längeren Zeitraum zu do-
kumentieren, indem die Bilder beispielsweise übereinander gelegt oder Teile des
einen in das andere Bild geblendet werden. Normalerweise wird die Prozedur von
Fotografinnenmittels Ansicht eines Ausdrucks vomOriginalbild und viel Geduld
durchgeführt. Die Kamera wird hierbei so lange graduell bewegt, bis die aktuelle
Einstellung möglichst genau der des Originals entspricht. Der visuelle Vergleich
zwischen Vorlage und Kamerabild ist zeitaufwendig und fehleranfällig, was den
Wunsch nach Computerunterstützung motiviert.
Die Verbreitung von mobilen Geräten mit integrierten Kamera, die anders als

kommerzielleDigitalkameras programmierbar sind, erlaubt solcheUnterstützung.
Bisher existieren allerdings kaum Ansätze. Zwei bereits existierende mobile An-
wendungen vereinfachen das Refotografieren mittels eines Overlays des Original-
bildes über das Kamerabild, doch die Nutzerin muss die nötige Kamerabewegung
nach wie vor selbst schätzen. Diese Arbeit stellt einen Versuch vor, ein leistungs-
fähigeres System zu untersuchen und zu implementieren, welches zuvor für einen
Computer mit angeschlossener Kamera entwickelt wurde. Die Anwendung nutzt
Algorithmen aus Bildverarbeitung undmaschinellem Sehen, um der Nutzerin die
nötige Bewegung zu kommunizieren.
Die theoretischen und praktischenHerausforderungen bei der Berechnung der

nötigen Bewegung werden untersucht und das System für iOS implementiert. Ei-
ne detaillierte Evaluation der Ergebnisse zeigt, dass die Reproduktion teilweise er-
folgreich ist, wobei einige Aspekte beimWiederfinden desOriginalaufnahmeortes
weiterer Arbeit bedürfen.
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1
INTRODUCT ION

This chapter will introduce the notion of rephotography, elaborate on the pro-
cess of how to make such a photograph and survey existing approaches to sim-
plify it. These include two applications for mobile operating systems which will
be briefly discussed. Furthermore, a summary ofmore sophisticated work byMIT
researchers will be given, leading to the problem statement and the goal of this
work.

1.1 rephotography

Rephotographyor repeat photographydenotes the retrieval of theprecise viewpoint
used for taking a—possibly historic—photograph and capturing another image
from the same spot, ideally with the same camera parameters. This allows for doc-
umentation and visualisation of changes which the scene has undergone between
the two or more captures. For instance when documenting urban development,
one can present progress of construction, restoration efforts or changes in the sur-
roundings in a visually strikingmanner, e.g. by blending the photographs together.
Figures 1.1 and 1.2 show examples.
When donemanually, the photographermust attempt to find the original view-

point usually by visual inspection of the original image and trying to match the
current camera parameters—camera position, camera rotation, focal length, possi-
bly principal point—to the original. The procedure is often carried out by placing
the camera on a tripod and comparing a printout of the original image with what
can be seen through the viewfinder or the camera screen. The number of param-
eters to match as well as the difficulty to estimate them purely from comparing
two-dimensional images makes the process error-prone and tedious. Visual acuity
and experience of the photographer thus place limits on the accuracy with which
the camera pose of the reference image can be reconstructed. Some corrections
can be done by post-processing the images and warping the rephotograph with a
homography to better match the original, but it would be preferable to achieve a
good result in-camera.
At the time of writing, few computerised aids are available to the photographer

(see Subsection 1.2.1). The advancement of mobile phones and tablet computers
with integrated cameras and larger screens presents the opportunity to develop ap-
plications which can assist in this endeavour, moving away from the traditional
trial-and-error approach. On current digital cameras1 this is impossible due to their
closed infrastructure not permitting to run user programs.

1 At the time of writing, no commercial manufacturer produces a camera with user-modifiable firm-
or software. A project at Stanford by Adams et al. (2010) was discontinued (Levoy, 2014).

2



1.1 rephotography 3

Figure 1.1: Rephoto of the Dresden Castle, destroyed during World War II, © Sergey
Larenkov, printed with permission

Figure 1.2: Rephotoof theDresdenFrauenkirche, destroyedduringWorldWar II,©Sergey
Larenkov, printed with permission
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Figure 1.3: Overlay customisation with Timera

1.2 previous approaches to assisted rephotography

1.2.1 Mobile Applications

Two applications have been developed to assist a photographer in taking repho-
tographs. For smartphone operating systems, rePhoto2 and Timera3 exist, both
available forAndroid and iOSdevices. These applications support the user by plac-
ing a transparent versionof theoriginal imageover the current camera image, allow-
ing for easier alignment. Both apps present the captured rephoto with the original
image blended in, but only Timera allows for customisation (see Figure 1.3)
What is characteristical about both of these applications is that the user must

still determine on their own how to actually move the camera. An overlay simpli-
fies the procedure, eliminating some of the inaccuracy introduced into themanual
approach by the necessity to move the eyes from printout to camera, but it is still
the user’s responsibility to determine the necessary motion between the current
camera position and the goal position (that of the original image).

1.2.2 Computational Re-Photography

Amore sophisticated automated approachwas presented byBae et al. (2010). They
found in preliminary studies that neither a side-by-side view, as would be used in
the manual approach, nor a linear blend provided by the above applications result
in accurate rephotographs. Their design applies image processing and geometrical
reconstruction of the scene in order to guide the user into the right direction.
This subsection will give a brief overview, while a more in-depth discussion of

the relevant concepts is deferred to Section 3.4. In this set-up, the relevant pa-
rameters of a historic image’s camera are reconstructed, including the focal length,
principal point and the six degrees of freedom in camera pose with structure-from-
motion (SfM) techniques. Five problems are addressed by Bae et al. (2010).

2 http://projectrephoto.com/
3 http://www.timera.com/Explore

http://projectrephoto.com/
http://www.timera.com/Explore


1.3 goals of this thesis 5

1. It is difficult to communicate a necessary motion to the user if it has six de-
grees of freedom.

2. While it is possible to compute the direction of translation between two
camera frames given some correspondingpoints, its scale is unknown so that
one does not know how far to move.

3. As the translation between two camera frames becomes small, the estimate
of relative translation becomes unstable.

4. Historic images are visually very different from current ones, so that auto-
matic feature detection will not work to obtain corresponding points.

5. The historic images’ camera is unknown, but its calibration parameters (see
Subsection 2.1.2) are needed.

To ease the user’s task and remove problem 1., Bae et al. (2010) warp the current
camera image according to the camera rotation between the current camera frame
and reference image. The user can then focus on correctly translating the camera.
To solve the other problems, user interactions is required. The user captures

two frames of the scene with a wide baseline. Manual selection of some correspon-
dences between the historic image and one of the two just taken eliminates the
fourth problem, while the second one can be addressed by using the two images
and the current camera frame for 3D reconstruction. The fifth problem is elimi-
nated by estimating the unknown parameters after identifying some lines in the
image which are parallel in reality.
The software runs on a laptop connected to a digital camera. On the computer

screen, the user is shown the current camera image alongside two arrows indicating
in which direction to move—one for movement in the sensor plane and one for
movement along the optical axis.
The results of thismethod appear to be very successful, but twomaindrawbacks

exist.

• The prototype is not very convenient, as it requires a (laptop) computer and
a digital camera which is impractical for spontaneous rephotography.

• The application is not available to the public, neither in source nor binary
form. It is therefore impossible to evaluate or adapt for more mobility.

1.3 goals of this thesis

This work’s objective can thus be summarised as follows.

1. Implement in a prototypal fashion the process from (Bae et al., 2010) for
a mobile operating system so it can be run on a smartphone or tablet and
direct the user in approximate real-time.

2. Evaluate the approach and attempt to reproduce the results.

For a proof-of-concept application, several simplifying assumptions are made.
Firstly, it is assumed that the “historic” photograph is captured with the same cam-
era as the one running the application and that the camera is calibrated. Secondly,
no strong visual differences between the reference and current scenes are assumed
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so that the reference image is accessible to the same feature detection algorithm
without the user manually labelling correspondences. This entails that the proce-
dure will not work on historic images, but the extension is relatively straightfor-
ward.
The application targets iOS 8 and current hardware, as image processing is com-

putationally intense, and has been tested on an iPad Air 2.



2
CAMERA GEOMETRY

This chapter will introduce the geometry of image projection, largely following
(Hartley andZisserman, 2004, chapters 6,7), the geometry of two views (the epipo-
lar geometry, Ma et al. (2003, ch. 5.1)) and how it can be used to recover relative
camera position from two images of the same scene.

2.1 camera models

The cameramodel canonically used in camera geometry is the ideal pinhole camera
model which postulates several idealised assumptions.

1. The aperture size is infinitely small.

2. There are no lens effects (thin lens assumption).

3. The angle of view is arbitrarily large.

4. All world points projected onto the image plane are in focus, owing to the
small aperture.

Given a camera C whose centre of projection is the origin and a point X in
camera-centric coordinates, the central projection of X ontoC’s image plane is de-
picted in a side-view in Figure 2.1. The image plane is virtually moved to the front
of the camera, otherwise the image would be mirrored at the principal point as in
real cameras. Let f be the focal length, which is the distance of the image plane to
the optical centre. IfX = (X, Y,Z), then x =

(
fXZ , fYZ , f

)
by use of the intercept

theorem.

C

X

f

x

Y

Z

f · Y
Z

Figure 2.1: Central projection for a pinhole camera
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8 camera geometry

When representing the points as homogeneous1 quantities, the central projec-
tion can be expressed by a matrix multiplication. This can be written with homo-
geneous coordinates as

 fX

fY

Z

 =

 f 0 0 0

0 f 0 0

0 0 1 0


︸ ︷︷ ︸
ProjectionMatrix ofC


X

Y

Z

1

 (2.1)

or in short
x ∼ PX (2.2)

2.1.1 Camera Extrinsics

The above situation is a special case wherein the camera centreC defines the origin
and the optical and image axes are the coordinate axes. Thus, the rotation and
translation of the camera relative to this coordinate system is zero. More generally,
there might be a world coordinate frame with different origin and different axes,
so that a coordinate transformmust be applied to X before the projection.
Let R ∈ R3×3 be a rotation matrix giving the camera’s rotation relative to the

world frame and T ∈ R3×1 its translation such that

Xcam = RXworld + T (2.3)

Then the projection of a point X in world coordinates onto the image plane
becomes

x = PX (2.4)

x =

 f 0 0

0 f 0

0 0 1

 [R | T ]X (2.5)

2.1.2 Camera Intrinsics

Most cameras are not pinhole cameras. To make them conform to the model, the
camera intrinsics need to be known. Above, the resulting image points x were in
normalised image coordinates. In particular, the principal point—the intersection
of the image plane with the optical axis—was assumed to be (0, 0). But generally,
image coordinates are expressed in pixels relative to the upper left corner of the
sensor. To convert between normalised and pixel coordinates, the camera’s five in-

1 Homogeneous vectors are the elements of projective geometry. They canbe obtained fromCartesian
coordinates by appending a 1-element. All projective entities which differ only by a scalar factor are
equivalent, one writes x ∼ y if x = λy, λ 6= 0. This has the added effect that points at infinity can
be represented by vectors whose last coordinate is zero.
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trinsic parameters can bewritten inmatrix form and premultiplied in equation 2.4
as

x =

 sx s cx

0 sy cy

0 1


 f 0 0

0 f 0

0 0 1

 [R | T ]X (2.6)

where sx and sy are the focal lengths inx- andy-directions expressed in pixel units
per world unit (e.g. cm; sx and sy are not necessarily identical, if the sensor has
non-square pixels), s the sensor skew (the pixelsmaynot be rectangular; their edges
may not be perpendicular) which is usually zero, and the coordinates of the prin-
cipal point (cx, cy) with respect to the origin of the image plane which is usually
placed at the upper left corner. The intrinsic camera parameters are assembled in

K =

 fsx s cx

0 fsy cy

0 0 1

 (2.7)

and are therefore essential to relate world points to image points which will be
important for this application. Thenormalised coordinates x̂ for a pixel coordinate
x can be computed as

x̂ = K−1x, (2.8)

which will remove the effects of the calibration parameters and thus make the im-
age coordinates independent of the camera’s internal characteristics.
In theory, these parameters could be obtained from the camera’s vendor who

knows the precise manufacturing specifications. In practice, only the focal lengths
fx, fy are known, in most cases only one of them with the hopefully correct as-
sumption of square pixels. Usually, the principal point is assumed to be at the
sensor centre and the pixels are assumed to be rectangular. In practice however,
there are variances introduced by different causes such as imprecisemanufacturing
or physical impacts whichmay decentre the lens such that the principal point is no
longer at the centre.
A further complication is introduced by the camera lens which will often have

a non-negligible distortion, most prominently radial distortion as depicted in Fig-
ure 2.2, but the thin lens assumption precludes distorted images. It can be mod-
elled by the application of a distortion factor to the ideal undistorted image coor-
dinates (x̃, ỹ) and thus removed to satisfy the thin lens assumption. Distorted and
ideal image coordinates are related as(

xd

yd

)
= L(r)

(
x̃

ỹ

)
(2.9)

where L is a nonlinear function of the distance r from the distortion centre—
usually coincident with the principal point. The function can be approximated as
an exponential with a Taylor expansion

L(r) = 1+

k∑
i=1

κir
i (2.10)
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correction

Figure 2.2: Radially distorted image on the left, the corrected image on the right.

for a given k (see Hartley and Zisserman, 2004, ch. 7.4). The intrinsic camera
parameters which consist in the entries ofK and distortion coefficients κi must be
determined in order to accurately relate world coordinates to image coordinates.
They can be found by calibrating the camera. Different methods exist (e.g Zhang,
2000) but will not be examined here.

2.2 epipolar geometry

Epipolar geometry is the geometry which relates the image points in two views of
the same scene. Figure 2.3 shows the basic set-up.
Weconsider a scene viewedby twocameraswithoptical centresc1 andc2, where

c1 defines the origin, world pointsXi ∈ R3, where the subscript denotes the coor-
dinate frame—the first camera, arbitrarily chosen to be the left one, or the second
camera—and homogeneous image points xi. Those are the projections ofXi onto
the image planes and thus correspond to the same world point. The cameras are
related by a rigid body transform (R, T), where R is a 3× 3 rotation matrix and T
the translation between the camera centres. Throughout this work, the direction
of coordinate frame transformation will be such that

X2 = RX1 + T (2.11)

It is obvious that the following relation holds,

λixi = Xi, λi > 0 (2.12)

that is, the world point lies on a ray through the optical centre and the image point.
Given the corresponding points xi in two images, the ultimate goal is to retrieve

the euclidean transform (R, T).
In case the image coordinates forboth cameras arenormalised (c.f. Subsection 2.1.2),

they have equal units, so starting from equation 2.11, one can derive

X2 = RX1 + T

λ2x2 = Rλ1x1 + T (by equation 2.12)
λ2T̂x2 = T̂Rλ1x1 + T̂ T T̂ ∈ R3×3 with T̂x = T × x

λ2xT2 T̂x2 = xT2 T̂Rλ1x1 + 0 T × T = 0

λ2 · 0 = xT2 T̂Rλ1x1 T̂x2 is perpendicular to x2
0 = xT2 T̂R︸︷︷︸

E

x1 (2.13)

The product E = T̂R is the essential matrix and the constraint it imposes on
corresponding image points the essential constraint (see Ma et al., 2003, ch. 5).
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c1 c2

X1

e1 e2

x1 x2
l2l1

R, T

Figure 2.3: Basic epipolar geometry with camera centres c1, c2, image points x1, x2, a
world point X1, epipoles e1, e2 and epipolar lines l1, l2

An intuition for the essential matrix can be obtained from Figure 2.3. Given an
image point in one frame x1, in attempting to find the point x2 corresponding to
the same world point X1, the epipolar geometry restricts the search space to one
dimension—the epipolar line of x1 in the second camera’s image plane. The cam-
era centres and theworld point define an epipolar plane. The backprojection of x1
is the ray through x1 and the optical centre c1. All points on this ray are mapped
to the same point on the image plane of c1. Depending on how far away theworld
pointX1 is from c1, its image on the second camera’s image planewill vary—but it
will be on the intersection of the image plane and the epipolar plane, the epipolar
line of x1. The line l2 may be identified with its coimage (the orthogonal comple-
ment of its preimage) l2 = e2 × x2 ∈ R3 so that

∀x : x ∈ l2 ⇔ x · l2 = 0. (2.14)

The coimage of the epipolar line is the vector perpendicular to the epipolar
plane, so every vector in this plane will have an inner product of 0 with this vec-
tor. Constrained to vectors in the image planes, this means that all vectors on the
epipolar line will have an inner product of 0with this vector l2. Referring back to
equation 2.13, it can be seen that multiplication with Ewill yield a term xT2E = l2
which fulfils

x1 · l2 = 0, (2.15)

which is precisely the relation stated in equation 2.14. The essential matrix thus
maps an image point onto its epipolar line in the other image.

2.3 essential matrix estimation

Estimating the essential matrix between two cameras and decomposing it into rel-
ative rotation and translation is a necessity in the endeavour to communicate a
necessary camera movement to the application’s user. The most prominent algo-
rithms in this regard are the 8-Point algorithm introduced in its original form by
Longuet-Higgins (1987) and improved upon byHartley (1997), and the 5-Point al-
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gorithm proposed by Nistér (2004). To illustrate the mathematical tractability of
the problem, the former will be presented below.

2.3.1 The 8-Point Algorithm

The essential matrix has nine elements, but since all image coordinates are projec-
tive quantities, all essential matrices differing by a constant factor are equivalent so
that one degree of freedom is removed and atmost eight remain. If onewere to for-
mulate constraints on the elements as a system of linear equations, eight of those
should be sufficient to uniquely determine an essential matrix. An improvement
suggested in (Hartley, 1997) is the preprocessing of the input data (the image coor-
dinates) by translation and scaling. This improves the robustness of the algorithm,
but will be omitted here.
For each point correspondence {x1 = (xi1,yi1, 1), x2 = (xi2,yi2, 1)}, one lin-

ear equation
xT2Ex1 = 0 (2.16)

is generated, which can be rewritten as

0 = xi2x
i
1e11 + xi2y

i
1e12 + xi2e13

+ yi2x
i
1e21 + y

i
2y

i
1e22 + y

i
2e23

+ xi1e31 + yi1e32 + e33 (2.17)

Let e denote the vector of E’s entries in row-major order, then

0 =
(
xi2x

i
1, xi2y

i
1, xi2,yi2x

i
1,yi2y

i
1,yi2, xi1,yi1, 1

)
· e (2.18)

If n correspondences are given, they each contribute one row to

Ae =


x12x

1
1 x12y

1
1 x12 y12x

1
1 y12y

1
1 y12 x11 y11 1

...
...

xn2 x
n
1 xn2 y

n
1 xn2 yn2 x

n
1 yn2 y

n
1 yn2 xn1 yn1 1

 e = 0

(2.19)

For eight noise-free point correspondences in non-degenerate general position,
there is a unique solution (up to scale) besides the trivial zero, but in practice, one
uses more correspondences and the system is overdetermined, so a least-squares-
solution minimising ‖Ae‖ =

∑
ij(Ae)2ij is sought. The solution is unique up

to scale, since all multiples of e will satisfy equation 2.19—this is also the reason
why the scale of the translation cannot be determined. One therefore introduces
the constraint ‖e‖ = 1which also excludes a trivial zero solution.
This solution vector is the singular vector with the smallest singular value in the

singular value decomposition ofA or equivalently, the eigenvector ofATA with
the smallest eigenvalue (see Hartley, 1997).

2.3.2 Further Algorithms

The 8-Point Algorithm is mathematically straightforward and linear, but in prac-
tice it suffers fromnoise (see Luong et al., 1993) and in real applications approaches
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the robustness of other methods only in its normalised form from (Hartley, 1997)
(not related to normalised image coordinates).
It has been noted above that E can have at most eight degrees of freedom. In re-

ality it has only five, as rotation and translation have three degrees of freedom each,
and one is lost due to the indeterminable scale. In theory five constraints from five
pairs of image points thus are sufficient for finding E. A solution was put forth by
Nistér (2004) and improved in (Stewénius et al., 2006). The algorithm is nonlin-
ear and thus much less easily understood and implemented, involving computing
the roots of a ten degree polynomial, and requires only five points, but can also
be applied to more. It can be considered a state-of-the-art solution to the relative
pose estimation problem; its performance in overdetermined cases in the presence
of noise compares favourably to other direct methods requiring six (Pizarro et al.,
2003), seven or eight points.
Many other methods exist. Some—like the algorithms described above—find a

globally optimal solution in closed formwhile others employ heuristicmethods to
iteratively approach a local optimum. A review is given in (Zhang, 1998).
Direct methods such as the five-point or eight-point algorithms are frequently

used in schemes likeRANSAC,whichmake the estimationmore robust to outliers
(correspondences which are imprecise or incorrect). For a number of iterations, a
hypothesis for E is computed on a minimal number of correspondences and then
evaluated on thewhole data set. If the inliers in the data far outweigh the outliers, it
is probable that a noise-free subsample is selected. The best hypothesis is kept. The
simplified algorithm is shown inAlgorithm 1 (c.f.Hartley andZisserman, 2004, ch.
4.8) and requires an error measure for E.

Data: n point correspondences
Result: a best-fitting essential matrix

1 Let cbest := 0;
2 for i := 0, i < maxIter do
3 Select randomly a minimal number of points to estimate Ei;
4 Compute error measure for Ei on all n points;
5 LetCi be the set of point pairs whose error does not exceed ε;
6 if |Ci| > cbest then
7 cbest := |Ci|;
8 Ebest := Ei;
9 end
10 end
11 return Ebest

Algorithm 1: Simplified RANSAC scheme for essential matrix estimation

2.4 decomposing the essential matrix

One step remains to recover the relative camera pose from corresponding points.
As per the derivation in Section 2.2, the rotation and translation between the two
cameras is encoded in E. Given an essential matrix, Hartley and Zisserman (2004,
ch. 9.6) show that there are four mathematically valid decompositions of E into R
and T , corresponding to four distinct geometrical scenarios (seeHartley andZisser-
man, 2004, ch. 9.6). Only one of the solutionswill place a pointX2 = RX1+ T in
front of both cameras, the others cannot be realised in practice. Triangulating one
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point from its corresponding image points in the two views will therefore reveal
the one correct solution, with the translation scale unknown.



3
CHALLENGES IN RELAT IVE POSE E ST IMAT ION

The success of recovery of relative pose mainly depends on two factors: The accu-
racy and correctness of image point correspondences and them not being in a de-
generate configuration, so that an epipolar geometry can be estimated from them.
This chapterwill examine the preconditions and the feasibility of pose recovery un-
der realistic conditions. Several problematic cases will be identified and described.
Furthermore, an assessment of different feature detection algorithms for the pur-
pose of this work will be given.

3.1 degenerate configurations

Degenerate configurations are those in which the data on which the essential ma-
trix is estimated allows for more than one mathematically valid solution. Two dif-
ferent cases can be observed.

3.1.1 Structure Degeneracy

Structure degeneracy is a configuration of points in the observed scene which do
not provide enough information to wholly determine an essential matrix. The
projection matrix P ∈ R3×3 with

x = PX

has twelve elements but is a projective quantity, so all non-zero multiples of P are
equivalent, wherefore it has only eleven degrees of freedom. A degenerate case is
for instance one in which all points observed by the two cameras lie on the same
plane (or worse, a subspace of even lower dimension). The images of a planar sur-
face in two cameras as well as the planar surface itself and its image are related by
a homography (see Hartley and Zisserman, 2004, ch. 13), which is a mapping be-
tween planes and has eight degrees of freedom (being a 3× 3matrix and a projec-
tive element), meaning that three degrees of freedom are undetermined (Torr et al.,
1999). A set of coplanar points alone thus does not provide enough information
to uniquely determine an epipolar geometry.
However, not all algorithms are susceptible to this problem. While the 8-point

algorithm alone cannot cope with this case, the five-point algorithm can and is
generally more robust (Li and Hartley, 2006). While there are other approaches
to work around such issues (e.g. algorithms developed by Chum et al. (2005) or
Decker et al. (2008), respectively), in practice, a five-point algorithm in aRANSAC
scheme works well and needs fewer iterations than an 8-point approach (Li and
Hartley, 2006).

15
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3.1.2 Motion Degeneracy

A second type of degeneracy occurs when the camera motion between two images
has fewer degrees of freedom than the model to be estimated—the essential ma-
trix. If the camera only translates or only rotates between images, the motion has
at most three degrees of freedom. As Decker et al. (2008) point out, an essential
matrix estimated under such conditions could be consistent with all correct point
matches, but also with some false ones due to the mismatch in degrees of freedom
between data and model. In schemes like RANSAC, such an estimate will have
a large consensus set—all inliers plus outliers—and so may lead to the premature
termination of the algorithm, despite the current hypothesis being inaccurate.
It is unlikely in rephotography that the observed scenewill be completely planar,

or that the user will move from the first frame in a motion which is pure rotation
or translation. Therefore, these degeneracies can be labelled edge cases and are not
specifically handled in the application.
However, the most degenerate case is the one with zero motion between the

frames and of primary importance for this application. An initial idea to simply
compare the original image with the current frame cannot be successful as relative
pose estimation from corresponding points becomes unstable when the motion
between the two cameras approaches zero. But this is the ultimate goal one wishes
to achieve. When naïvley comparing the current camera image to the reference
photograph, the estimate for relative rotation and translation would become in-
creasingly unreliable as the camera approaches the original viewpoint.

3.2 finding correspondences

There is a variety of automatic feature detection algorithmswhich differ in repeata-
bility, robustness to noise, speed, and invariance with respect to image character-
istics such as scale, brightness, or rotation. Generally, a feature detector identifies
potentially salient points in an image and computes a descriptor for these points
in a way that the same point under different conditions will yield an ideally identi-
cal descriptor. When points of interest—usually called keypoints—are available in
multiple images, their descriptors can be compared and the best match according
to some metric can be selected for each keypoint. The matches found can then be
used as corresponding points for relative pose estimation.
Classical state-of-the-art detectors includeScale-invariant feature transform (Lowe,

1999) and Speeded-up robust features (Bay et al., 2006) which both compute real-
valued descriptors. A natural criterion for selecting the best matching keypoint
for a given keypoint is the L2-norm of the difference of their descriptors, which
is a relatively expensive computation. While e.g. SURF improves performance
over the computationally demanding SIFT detector, the speed of matching can
still present a bottleneck in time-critical contexts. The proliferation of mobile de-
vices withmore economic hardware increased the demand for faster detection and
matching of features and many solutions have been proposed. On the one hand,
efforts have been made at faster feature detection algorithms in general (such as
SURF or FAST (Rosten and Drummond, 2005)), but most promising are those
which compute binary instead of real-valued descriptors. The matching of n fea-
tures between images is an O(n2) operation when done with brute force, thus
often placing a limit on the computational efficiency of the whole process. On real
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hardware, floating point operations are generally less efficient when compared to
integer or binary arithmetic. While for real-valued descriptors d1, d2 with sizen,
an L2-norm √√√√ n∑

i=1

(di1 − d
i
2)

2

must be evaluated, binary strings can be compared with the Hamming distance

n∑
i=1

di1 ⊗ di2

which is much faster. These descriptors include but are not limited to BRIEF
(Calonder et al., 2010, Binary Robust Independent Elementary Features), ORB
(Rublee et al., 2011, Oriented BRIEF) and FREAK (Ortiz, 2012, Fast Retina Key-
point). While some invariances are sacrificed in favour of performance (such as
rotation invariance of BRIEF, corrected by ORB), they are claimed to match the
repeatability of SIFTandothers formanyuse caseswhile beingmuch faster to com-
pute and compare. Another recent development by Alcantarilla et al. (2013) are
AKAZE features, building on and accelerating the previously proposed KAZE de-
tector (Alcantarilla et al., 2012), also using binary strings to describe feature points.
This detector has been chosen for this work because it offers significant speed im-
provements over SIFT or SURFwhile sacrificing no quality in the tested scenarios
(see Chapter 5).1

SIFT is the feature detector used byBae et al. (2010)which is why it andAKAZE
will be intriduced and compared briefly here.

3.2.1 SIFT & AKAZE

The SIFT detector attempts to find keypoints by convolving an input image with
Gaussian kernels of successively larger variance, thus building a stackof image scales.
This process is repeated for several octaves, each starting from a downsampled ver-
sion of one of the blurred images from the previous scale octave. The resulting
pyramid is termed scale space. From these Gaussian images, difference-of-gaussians
(DOG for short) are computed by subtracting neighbours in scale space. These dif-
ference images approximate an application of the Laplacian of Gaussian (a Lapla-
cian filter with prior smoothing to remove noise) which computes the second spa-
tial derivatives of the image and whose extremes are locations of rapid intensity
change like edges or corners. Within this scale space, extrema are found which are
such pixels in the DOG images whose absolute values are maximal or minimal in
comparison with their 26 neighbours in scale space. This search is conducted in
all DOG images for all octaves which contributes to the scale invariance. After lo-
cating the keypoint with subpixel accuracy in the image, keypoints are discarded
if their absolute DOG value is below some threshold as those are unstable and un-
likely to be found under different conditions. Furthermore, theHessian of the im-
age (the matrix of second-order partial derivatives of the image intensity function)
is computed to filter out keypoints on edges as they are not accurately localised and
thus likewise unstable. Descriptors are computed by assigning a primary orienta-

1 SIFT and SURF are both protected by US patents and cannot be used without a license in a com-
mercial application in this country.
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tion after analysing the intensity gradients in the region around the keypoint and
binning them into histograms. A keypoint’s coordinate system is rotated accord-
ing to this primary orientation, thus achieving rotation invariance. The resulting
descriptor has 128 elements which will occupy at least as many bytes.
In contrast to SIFT, where the scale space construction is linear since convolu-

tion is linear, the scale space in AKAZE is nonlinear. Gaussian blurring (a form
of isotropic diffusion) at successively higher scale smooths not only noise, but also
true object boundarieswhich decreases the accuracy of localising keypoints. Anon-
linear scale space blurs the image in a way that respects the local image structure
and thus preserves object boundaries while smoothing out noise. A visualisation
of the difference is shown in Figure 3.1. The diffusion is large in homogeneous
areas and small in areas of significant intensity change. A nonlinear scale space is
built for AKAZE by means of fast explicit diffusion (Grewenig et al., 2010) and
the diffusivity is adapted by considering the magnitude of the image gradient at a
given point—meaning that it will be smaller for areas of strong change and larger
for others. As in SIFT, the scale space consists of several octaves, each downsam-
pled by twowith respect to the previous octave. Within the octaves, the images are
called sublevels. The Hessian matrix determinant is used to identify possible key-
points (in SIFT, this is used to filter out bad candidates), but the candidate must
be extremal compared to other keypoint candidates in its neighbourhood instead
of neighbouring pixels. The window searched depends on the scale at which the
keypoint is located (the window is larger at higher scales with more blur).

Figure 3.1: Image from (Weickert, 1998, p.120,121). Linear diffusion on the left, anisotropic
nonlinear diffusion on the right.
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The AKAZE descriptor is obtained by dividing the image region around a key-
point into a grid and then performing binary tests between all such grid cells i, j
which testwhether f(i) > f(j) for some function fwhich encapsulates some infor-
mation of the cell (Yang andCheng, 2012). To achieve rotation invariance, this grid
is rotated according to the dominant orientation computed by considering the im-
age derivatives—already computed for the detection—in the neighbourhood (Al-
cantarilla et al., 2012). The results of these binary tests are assembled into a binary
vector. Its size can be adjusted by making the grid coarser or finer. For f, Alcantar-
illa et al. (2012) consider both intensity differences and the two image derivatives.
The three properties are referred to as channels and the descriptormay include one,
two or all three of them, with three yielding best performance.

3.3 scale ambiguity

Computing relative translation between two cameras from corresponding image
points is possible only up to an unknown scale (see Subsection 2.3.1), meaning
it is impossible to determine e.g. if an object viewed by the camera is small and
close or large and further away. This poses the problem of how to determine if the
user is close to the desired viewpoint and whether or not they have come closer or
moved further away over the iterations. The issue of unknown scale alone would
not be problematic, but an iterative procedure requires to maintain a consistent
scale for all estimates of necessary motion. If at one point the estimate says “go
right” and after doing so, again “go right”, it is impossible to say whether the cam-
era has moved into the right direction or the opposite one and thus whether the
goal was approached.

3.4 practical problems

In the context of a rephotography application as in (Bae et al., 2010), five primary
obstacles in viewpoint reconstruction of a historic photograph can be identified.

1. The necessary camera motion has six degrees of freedom—three for transla-
tion and three for rotation—which are challenging for the user to adjust si-
multaneously, as changing one parameter will often necessitate adjustments
for the others to improve the registration. Furthermore, the number of de-
grees of freedom makes it difficult to communicate to the user how they
must move the camera.

2. The estimate for relative translation between two views will be defined only
up to an unknown scale (see above)

3. The original photo cannot be used directly for pose retrieval, because the
estimate degenerates when the user approaches the original viewpoint (see
above)

4. Automated computation of relative camera pose will rely on feature detec-
tion to find correspondences. However, historical imageswill oftenbe vastly
different from the current scene. Not onlymay the scene itself have changed
considerably, but also the historical image—having been taken by a histor-
ical camera—may differ in contrast, sharpness and colours. Neither SIFT
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nor AKAZE will reliably find correspondences between such an image and
a current photo.

5. The calibration data—most importantly, focal length and principal point—
of the historical camera are often unknown. The calibration data is needed
for relative pose computation (see Section 2.2).

Bae et al. (2010) address all these issues in the following way. Initially, after load-
ing a historical image, the user is instructed to take two photographs of the scene
with a reasonably wide baseline (about 20°). One of them, termed first frame is
supposed to be taken from some distance from the original viewpoint, the second
frame should be the user’s best eyeballed approximation of it. The wide baseline
allows for a more reliable 3D-reconstruction of the scene used to tackle problems
2. and 3.

Problems 4. & 5. — Missing calibration and visual di�erences

SIFT features are computed and matched between the first and second frames.
Given these correspondences, 3D coordinates of the points can be computed. A
selection of these is reprojected into the second frame after which the user identi-
fies six or more points in the historical photograph corresponding to these points
in the second frame. This allows estimating extrinsic and intrinsic camera param-
eters of the historical camera by running an optimisation algorithm on an initial
estimate for relative rotation and translation between first frame and reference im-
age. Also sensor skew, focal length and principal point of the historical camera can
be inferred this way (problem 5.). The reference photograph is not needed any
more after this initial step, circumventing problem 4. The principal point’s initial
guess is found again with help of the user who identifies three sets of parallel lines
in the historical image (see Hartley and Zisserman, 2004, chapter 8.8).
In this work, this problem is neglected and it is assumed that the original image

can be matched with current photographs, so it should not actually be historic.
This restriction is envisioned to be removed in the future.

Problem 3. — Motion degeneracy

A this point the pose of the reference camera relative to the first camera Tref,first

and Rref,first is known. During the homing process, the current camera frame is
compared to the first frame (not the reference frame, avoiding problem 3.), which
avoids degeneracy due to the wide baseline. Thus one obtains Tcurrent,first and
Rcurrent,first. Given the locationsof the reference camera and the current frame’s
camera, each relative to the first frame, one can compute the location of the refer-
ence relative to the current frame and thus guide the user in the right direction.2

2 Depending on the coordinate system used and whether R and T are given such that they transform
points from frame 1 to frame 2 or vice versa, the equations will look different, as they do in (Bae
et al., 2010)
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Xref = Rref,firstXfirst + Tref,first (3.1)
Xcurrent = Rcurrent,firstXfirst + Tcurrent,first (3.2)

Xfirst = R
T
current,first (Xcurrent − Tcurrent,first) (3.2, R orthogonal)

Xref = Rref,firstR
T
current,first (Xcurrent − Tcurrent,first) (3.3)

+Tref,first (3.1, substitute 3.2)
Xref = Rref,firstR

T
current,firstXcurrent

−Rref,firstR
T
current,firstTcurrent,first + Tref,first (3.4)

and thus
Tref,current = −Rref,firstR

T
current,firstTcurrent,first + Tref,first (3.5)

and
Rref,current = Rref,firstR

T
current,first (3.6)

Problem 1. — Complicated motion

During homing, Bae et. al warp the current camera frame according to the nec-
essary rotation before being shown to the user, allowing them to focus only on
the translation (problem 1.). This is possible since for rephotography dealing with
structures usually at somedistance, the rotationwill be small, otherwise thewarped
image would be unusable. This kind of support is also disregarded in this work,
as achieving the correct rotation with the help of an overlayed edge image is easy
enough, as long as one is directed to the correct spot. Therefore, only the transla-
tion is communicated.

Problem 2. — Unknown scale

A remaining problem (2.) is that the scale of the necessary translation is unknown,
so that only the direction can be determined. This poses the question of how to
find out whether the user has come closer to the goal or not. It may be feasible
to find the original viewpoint nonetheless, if it could be determined at least when
the user reaches it, but this is not the case without further information. On top of
that, it would make for a better user experience if the distance to the goal could be
communicated, too.
A key observation in this regard is that the actual scale of the translation is irrele-

vant, it is sufficient that there be away tomake the scale consistent across iterations.
That is, it is unnecessary to knowwhether the goal is a specific distance away, if one
can ensure that the translations computed one after the other can be somehow
meaningfully compared. For this, Bae et al. (2010) observe that when triangulat-
ing 3D coordinates from corresponding points, their computed distance from the
camera (the first frame) is inversely proportional to the distance between the cam-
eras. An intuition can be obtained from Figure 3.2. To measure the scale of the
world, the application uses the matches between the first and current frames and
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Figure 3.2: The camera baseline length is inversely proportional to the distance of the
viewedobject to oneof the cameras. Evaluating the distance of viewedobjects to
the first frame’s camera yields a measure for how far the two cameras are apart.

computes 3D coordinates by triangulation.3 The average distance of those points
to the first frame’s camera centre is computed and compared across iterations to
make the scale consistent.
The scale computed in the current iteration compared to the one computed

in the initial step for the first and second frames. Scaling the current translation
vector by the ratio of the two scales makes the length consistent across iterations
and decreasing with the distance to the goal. However, as this estimate relies on
the intercept theorem, it is only valid as long as the user moves on a straight line
between the initial estimate (position of the second frame) and the goal. Empirical
analysis (see evaluation in Chapter 5) demonstrates that strong movement along
the optical axis will decrease the usefulness of the scale estimation. However, in

3 The constraints x = PX and x′ = P′X give rise to a linear equation system which can be solved for
X by singular value decomposition as used in the 8-point-algorithm in Subsection 2.3.1. For details,
see (Hartley and Zisserman, 2004, ch. 12.2).
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reality this should be a minor problem, as the movement around a scene will be
stronger than towards or away from it when rephotographing.
For a summary, Figure 3.3 shows the complete pipeline.
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Figure 3.3: Computational rephotography procedure



4
REPHOTOGRAPHY APPL ICAT ION

This chapter will document the development of the iOS application implement-
ing the theory outlined in the previous chapter. The iOS platform will be briefly
introduced before the user interface, features and implementation of the app will
be described.

4.1 overview

4.1.1 iOS Operating System

iOS is the operating system running on all ofApple’smobile devices. It is currently1

at version 8.4.1 with its successor iOS 9 in beta stadium. Code is compiled by the
clang compiler and thus all languages supported by it can be used. The primary
development language is Objective-C, a strict, object-oriented superset of the C
language2. Code of these languages can be freely mixed. AnObjective-C++ dialect
exists to support C++ as well.
The software development kit for the platform employs Objective-C for most

high-levelAPIs andC formore low-level functionality. With respect to application
design, theModel-View-Controller pattern (see Figure 4.1) is used throughout the
Cocoa library. Cocoa incorporates the standard (Foundation classes) and graphi-
cal user interface (AppKit on OSX, UIKit on iOS) libraries as well as Core Data
for persistence. For applications such as this one with little or no need for data ma-
nipulation, there are no dedicated model classes and the controller objects can fill
in the role of those.
Following the MVC pattern, iOS requires a view controller for every view hier-

archy to present it to the user andmediate interactionwith them. View controllers,
by virtue of being derived from UIViewController, have many methods which
are automatically called by the runtime for certain events in the associated view’s
life cycle. For example

viewDidLoad Invoked after the controller’s view hierarchy was loaded/inflated
from an archive, but before it appears.

viewDidAppear Invoked right after the view has appeared on screen.

prepareForSegue Invoked before transitioning to another view controller.

In order to implement the relationship between view andmodel (c.f. Figure 4.1)
and respond to user input, the delegate pattern (Gamma et al., 1995, ch. 1.6) is used.
Views delegate the responsibility of deciding what should happen on user input
to a delegate object, typically the view controller. For example, a view controller
might conform to the UIScrollViewDelegate protocol3 and is then required
to implement callbacks such as

1 September 21, 2015 (Apple Inc., 2015)
2 There is no precise definition which C version it is a superset of, except that it is ANSI standardised;
For each C version supported by the compiler, Objective-C will be compatible with it.

3 Protocols are an Objective-C equivalent of interfaces in other languages

24
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• scrollViewDidScroll

• scrollViewDidZoom

and more for controlling the associated UIScrollView. The pattern is used for
all complex views.

Model

Core Data

View

UIKit : UIView

Controller

UIKit : UIV
iewController

Change state Update display

Send user input

Request state

Notify of change

Figure 4.1: TheModel-View-Controller pattern postulates three components. The model
is the backing store for all datawhich is presentedby the view component. Inter-
action between the user and the data is mediated by the controller. Decoupling
a system like this allows the components to be interchangeable. For example,
should the mode of presentation be changed form a graphical to a command-
line interface, only view and possibly controller must be swapped, which is also
possible at runtime.

Generally, an iOS application is a sequence of view controllers presented to the
user in various ways—they can be independent or presented modally over other
view controllers which typically control them by becoming their delegate. This
form of presentation is used for instance for image pickers giving quick access to
the user’s photo library or the camera.
Apple’s XCode integrated development environment allows to visually model

the flowof the applicationbyuse of Storyboards. These areXML fileswhichdefine
controllers and their relationships. This allows for a cleaner separation between
user interface and business logic, while it is equally possible to specify the presenta-
tion order programmatically. Storyboards consist of a number of view controllers
with associated views which are connected by segues. When an application devel-
oped with storyboards starts up, a UINavigationController is created which
maintains a stack of view controllers on which segues push new ones or pop old
ones from (unwind segue). The storyboard for the application developed in this
work is shown in Figure 4.2.
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Figure 4.2: The Storyboard of this application. There is always a root view controller on
whose stack new controllers are pushed or popped from, here on the top left.
The different view controllers are connected by segues. The navigation con-
troller on the top left initially has a Main View Controller pushed on its stack.
This one is connected with other controllers with different actions attached to
the two buttons and so forth. Inside the storyboard, the actual user interface
can be created with drag-and-drop of widgets.
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4.1.2 The OpenCV Library

For all image processing, the Open Source Computer Vision library (OpenCV) is
used in version 3.0. Originally developed by Intel and then byWillow Garage, de-
velopment is led today by itseez4, but is strongly community-driven. The library
containsmany algorithms for image processing for purposes such as segmentation,
geometric transformation, feature and object detection and 3D reconstruction. It
can be natively used from C++, but Python and Java bindings as well as a dep-
recated C API exist. The modules used in this work are the features2d and
calib3dmodules for feature extraction and multiview geometry (pose recovery),
respectively.5

4.1.3 Mixing Objective-C & C++

OpenCV encodes images in its Mat data type, which is the only C++ type also used
in other (Obj-C) parts of the application. While it is possible to mix Objective-C
and C++ code, using C++ types in header files forces every client including them
to also be compiled as Objective-C++, which may be unwanted. For instance,
XCode’s refactoring tools cannot be used on these sources. It is thus reasonable
to create wrapper classes for all C++ types encapsulating the access to the data so
that the interface is pure Objective-C. Only the implementation of the wrapper
class would need to be compiled as Objective-C++, no client would be affected. A
large amount of boilerplate code would be required to translate Objective-C mes-
sages to the wrapper in C++ calls to the wrapped object. It is therefore convenient
to encapsulate a C++ type but make it still accessible to client classes if needed.
One way of limiting the Objective-C++ to one class is a variant of the Pointer-

to-Implementation pattern (PIMPL, also known asBridge in (Gamma et al., 1995)).
The wrapper class’ interface (Listing 4.1) is specified in pure Objective-C and con-
tains an opaque pointer to a C struct representing the wrapped data as a C type,
which therefore does not lead to compatibility issues as all C code is validObjective-
C. For the original pattern this allows modifying the wrapper hierarchy indepen-
dently of the implementation hierarchy (e.g. different implementations could be
behind the pointers for different platforms). The definition of this pointer-to-
implementation type is placed in a second header file (Listing 4.2) and is imported
only by those clients which actually need to access the data, not only pass it on.
This permits compiling only those source files as Objective-C++ that must deal
with the actual OpenCV Mat. In principle it would be possible to create methods
in the wrapper class for all uses of the C++ type throughout the program. How-
ever, this would waste the benefits which e.g. C++ operator overloading yields for
readability as all operations would have to be node with method calls. Since all
image processing is done in C++ anyway, it is more economic to simply provide
access to the wrapped data to those classes that need it.

struct CVMatWrapperImpl;

@interface CVMatWrapper : NSObject

@property (nonatomic,readwrite) struct CVMatWrapperImpl* impl; //

/< Pointer to struct wrapping the matrix

4 http://itseez.com/OpenCV/
5 Pose recovery functions for calibrated images were unavailable prior to version 3.0. Furthermore, the
new version moved all patented feature detection algorithms to a separate repository.

http://itseez.com/OpenCV/
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@property (nonatomic,readonly) int rows; ///< Number of rows of

the wrapped matrix

@property (nonatomic,readonly) int cols; ///< Number of columns

of the wrapped matrix

-(NSArray*)eulerAngles;

-(NSString*)description;

@end �
Listing 4.1: CVMatWrapper.h. The wrapper interface contains an opaque pointer to a C

struct. including this header does not invalidate othewise valid Objective-C
code.

struct CVMatWrapperImpl {

cv::Mat cvMatrix; ///< The wrapped matrix

}; �
Listing 4.2: CVMatWrapperImpl.h. The implementation header defines the actually

wrapped type. Including itwill force a client to compile asObjective-C++ since
a C++ type is used. Every class which deals with the data itself can include this
header in addition to the wrapper one.

#import "CVMatWrapper.h"

#import "CVMatWrapperImpl.h"

@implementation CVMatWrapper

-(instancetype)init {

self = [super init];

if (self) self.impl = new CVMatWrapperImpl; // allocate the

struct wrapping the matrix

return self;

}

-(void)dealloc {

if (self.impl)

delete self.impl;

}

-(NSString*)description {

//...

}

-(NSArray*)eulerAngles {

// ...

}

-(int)rows {

return (self.impl->cvMatrix).rows;

}

-(int)cols {

return (self.impl->cvMatrix).cols;

}

@end �
Listing 4.3: CVMatWrapper.mm. The wrapper class’ implementation must be Objective-

C++ and can encapsulate all access to the underlying data, if necessary.
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4.2 application layout

This section will walk through the different screens presented to the user and elab-
orate on the functions of the associated view controllers. An overview of the se-
quence of screens and controllers is shown in Figure 4.3.

MainViewController

View or make rephotos

PhotoChooserController

Select original or set settings

RephotoManager

Retrieve viewpoint

ResultViewController

Review rephoto

SettingsViewController

Adjust settings

ELCImagePickerController

Select rephoto to view

ResultViewController

Review rephoto

Figure 4.3: Sequence of view controllers

4.2.1 MainViewController

When the app starts up, the user is shown a MainViewController which of-
fers a choice whether to make a new rephotograph or view existing ones. Clicking
the Take Rephoto button will trigger a segue to a PhotoChooserController,
while tapping View Rephotos will modally present an ELCImagePickerCon

troller.
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Figure 4.4: MainViewController view layout

4.2.2 PhotoChooserController

This view controller displays a scrollable and pannable view and a button
Choose Photo from Library to load a reference photograph into it. The
photo is picked from the user’s photo album. Furthermore, the navigation
bar contains a button to access the settings ( , presents a SettingsViewCon
troller) as well as a button to start the rephotograph ( ). The latter will
modally present a UIImagePickerController which exposes a simple API to
access the device’s camera. A RephotoManager is attached to it that controls the
rephotography. The RephotoManager has a delegate property which points to
the PhotoChooserController. The controller can then be informed when the
rephotograph is done or cancelled.

Figure 4.5: PhotoChooserController view layout

When an image is picked, the controller uses the Canny edge detection algo-
rithm (Canny, 1986) to generate an overlay whichwill then help the user in finding
the perfect alignment.
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Figure 4.6: PhotoChooserController with loaded image

4.2.3 SettingsViewController

The SettingsViewController possesses three panels which allow for modifi-
cation of the colour of the edge overlay and insert authentication data for future
use with an envisioned online platform. The third panel is unused in the current
version and couldbe appropriated for other kinds of preferences such as the default
type of visualisation for the necessary camera motion (see Chapter 6).

Figure 4.7: SettingsViewController view layout

4.2.4 RephotoManager

The two most important classes are the RephotoManager and the PoseDiff
erenceEstimationOperation. A RephotoManager is attached to a UIIm
agePickerController in camera mode and controls the execution of the
rephotograph. An overlay view is added to the camera stream and contains a
shutter button and information labels telling the user what to do next. Tapping
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the info button ( ) expands the label to reveal more information. The manager
is realised as a state machine, depicted as a flow chart in Figure 4.8.

START

HAS_FIRST
_FRAME

First and
second
can be
matched?

HAS_SECOND
_FRAME

DONE

Shutter tapped:
First image captured

Shutter tapped:
Second image captured

No

YesAutomatic capture

Shutter tapped:
Final image captured

start

Figure 4.8: States of the rephoto manager object

START

Initially, the user interface presents shutter and cancel buttons in a toolbar at the
bottomand an info indicator on the top left, telling the user the take the first frame.
When the user taps the shutter button, the first frame is captured and saved.

HAS_FIRST_FRAME

When transitioning to this state, the manager changes the info label accordingly
and displays a check mark for the first frame in the centre of the toolbar. Further-
more, at this point the precomputed edge overlay is presented so that taking the
second frame which should be reasonably close to the original viewpoint is possi-
ble.

HAS_SECOND_FRAME

Once the second frame is captured, the second check mark is shown, the info la-
bel changes again and the preprocessing step is attempted. A PoseDifference

EstimationOperation is started with the first and reference frames to obtain
Tref,first and Rref,first to be used in equation 3.5. A second operation is run
for the reference scale computation by use of first and second frames. Relative
translation, rotation and goal scale are saved.
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Should one of the computations fail, the user interface resets to the initial state
except for an error label at the bottom centre informing the user that the match-
ing failed, underpinned by a red box. Otherwise a timer is initiated that will take
pictures at a certain interval which should accord with the hardware running the
program. For the tested device, it is set to one second, although somewhat higher
frame rates are possible. For each frame captured like this, a PoseDifference
EstimationOperation (see below) is started. The captured frame and the first
frame are processed and their relative pose computed. With the information com-
puted during preprocessing, the necessary translation is inferred with equation 3.5.
Meanwhile, a panel at the bottom centre is revealed which visualises this nec-

essary motion of the camera. For this, several means are possible and discussed
in Section 6.1. Bae et al. (2010) found that an arrow visualisation for the transla-
tion in the XY-plane and Z-direction is most effective so this approach has been
chosen here. Two camera pictograms are shown, one back view and one top view.
There is one arrow positioned on each so that the translation in the XY-plane and
Z-direction are independently visualised.

Figure 4.9: RephotoManager after second frame was captured

DONE

Once the final image is taken, the controller informs its delegate that the repho-
tograph has finished and passes the final capture. The delegate—in this case the
PhotoChooserController—can then put together an ImageData object to
present the rephoto to the user.

4.2.5 ResultViewController

This controller must be passed a completed rephotograph in an ImageData ob-
ject and displays the new image over the original. With a slider, the new image
is horizontally clipped to some percentage of its width and can thus be dynami-
cally unrolled over the original. Depending on a flag in the ImageData object, the
rephoto passed to the controller will be saved. For this, the app makes use of the
sqlite library. TheDBManager classmanages communicationwith a lightweight
SQLdatabase. Since all photos are part of the user’s photo library—there is noway
to save assets locally for an application—they are saved as a tuple of two NSURLs.



34 rephotography application

Both the built-in UIImagePickerController and the ELCImagePickerCon
troller return the URL of a selected image so it can be used to map a rephoto
on its original or vice versa when it should be displayed.

Figure 4.10: ResultViewController view layout
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On the top right, a share button ( ) lets the user upload
a rephoto to an experimental test server for display, but the
functionality is only rudimentary and requires the server to
be running with a known IP address.

4.2.6 ELCImagePickerController

For the task of reviewing rephotographs, the ELCIm

agePickerController is used. Contrarily to the built-in
UIImagePickerController, this reimplementation by
Nutting et al. (2013) allows to inspect a specific asset, like a
photo album instead of all assets there are. In the album
display, the user is shown the new photographs of each
rephoto and upon selection is presented a ResultView
Controllerwith the rephotograph.

4.3 implementation

This sectionwill survey themore important pieces of the software and elaborate on
the particular challenges addressed by them. The implementation of the relative
pose estimation is described in detail.

4.3.1 User Interface

For the user interface several custom views classes are implemented.

1. ArrowViewA viewwhich is backed by an ArrowLayer and allows display-
ing it as CALayers cannot be shown without a wrapping UIView.
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2. ArrowLayer A CALayer subclass which can display a parametrisable ar-
row shape whose parameters can be seamlessly animated. CALayers are
the backbone of all UIView objects.

3. ImageScrollView A ScrollView subclass which allows displaying a
zoomable and pannable image while also preserving the visible portion
when the user interface orientation changes.

4. CircleView A simple view purely for drawing a circle parametrised with
colour and line width.

5. MaskableUIImageView An UIImageView which allows the image to be
clipped to somepercentage of itswidth. This is used to display a before-after
comparison of the original and repeat photographs.

Furthermore, two view hierarchies and the storyboard belong to thismodule. If
a custom view must exhibit some particular behaviour which necessitates custom
methods, creating classes is appropriate. For interface elements which contain a
larger hierarchy of nested views without exposing any particular behaviour besides
what the contained views cando, specifying them in a visualmanner is less involved.
Such view hierarchies can be built visually as XIB files in an XML format. The
CameraOverlay overlayed on the current camera picture is created like this, as
well as the launch screen shown when starting the app.

4.3.2 Image Processing

The bulk of the work is done inside the utility class’ ImageUtils static methods.
To compute the pose difference between two frames, clients can call the public
method +[computePoseDifferenceBetweenCamera:secondCamera:cal

ibrationFile:scale:]. The two images must be passed, as well as the path
to a calibration file in OpenCV’s FileStorage format. A scale parameter can be
used to speed up the computation by downsampling the images. The scale is set to
0.33, compromising between speed and matching robustness. This number takes
into account that compared to the computations performed on a computer (see
Chapter 5) some detail is lost during conversion between iOS’s UIImage format
and OpenCV’s Mat type.
Internally, the method converts the images, uses OpenCV image processing

functions to compute the pose difference, and the average distance of thematched
features to the first camera. The client is returned an NSDictionary containing
the rotation, translation, average point distance, and—should the computation
fail—an error code in which case all other values are invalid.
The method first runs AKAZE on both images, the parameters used are shown

in Table 4.1. Computation is aborted if one of the images yields fewer than 100
keypoints. Matches are found by brute force with a ratio test as suggested by Lowe
(2004). Letd(x,y) denote the distance (here the L2-norm) of descriptors x andy.
For all descriptors x in the first image, the two best matching descriptors y1 and
y2 in the other image are found. If

d(x,y1)
d(x,y2)

< ρ
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Parameter Value

nOctaves 4

threshold 0.001
nOctaveLayers/sublevels 4

descriptor_size 486 bits8

descriptor_channels 3

Table 4.1: Parameters used for AKAZE (number of octaves, detector response threshold,
levels per octave, size of the descriptor and the number of channels, see Subsec-
tion 3.2.1)

Parameter Value

nOctaveLayers/Sublevels 3

contrastThreshold 0.04
edgeThreshold 10

sigma 1.6

Table 4.2: Parameters used for SIFT (number of octaves, number of sublevels per octave,
detector response threshold, edge threshold for filtering edges, standard devia-
tion of the Gaussian for the initial image)

then the pair (x,y1) is chosen as a match. Lowe suggests ρ = 0.8, the app uses
a stricter ratio of ρ = 0.7. This test will filter unstable matches between e.g. re-
peating patterns in an image (windows, wall structure etc.) as for such a point the
corresponding point is very ambiguous and its best matches will be similar in dis-
tance.
The function then removes the image distortion (see Subsection 2.1.2) on the

sparse set of keypoints instead of thewhole image for efficiency.6 Onthe correspon-
dences, RANSAC and the five-point algorithm are used to find the best-fitting es-
sential matrix. The confidence threshold is set to 0.999, a point is considered an
outlier if its distance to its epipolar line exceeds 3 pixels.
Once E is fixed, the optimal triangulation method (see Hartley and Zisserman

(2004, ch. 12.5.2)) is used to correct the corresponding points. Since one assumes
the computed essential matrix is correct, the information can be used to refine the
position of corresponding points. This should make pose recovery with E and the
points more accurate.
The essential matrix is then decomposed intoR and T . A sanity check for a valid

rotation matrix is performed by checking that |detR| ≈ 1.7

6 Since undistortion requires resampling of the image, it is better to find features beforehand as some
information may be lost by interpolation.

7 A rotation matrix is orthogonal and orthogonal matrices’ determinants are±1
8 AKAZEFeatures.cpp line 720, commit 09b9b0f
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Category Name Function

NSMutableURLRequest

(RephotoUpload)

Addsmethod to post a rephoto to an experimen-
tal server via HTTP

ALAssetsLibrary

(CustomPhotoAlbum)

Adds method to add an image to a specific al-
bum, not possible per default. Used to save
rephotos to the Rephotos album

NSUserDefaults (UI

Color)

By default, only some types can be persistently
saved in the user defaults. Adds method to
save colours. Used to remember the user’s edge
colour.

CALayer (UIColor) Properties for view objects can be set in Interface
Builder, but only if they are of object type. To
set a view’s backing layer’s border colour outside
of the code, a colour property of object type is
defined, mapped to the C type CGColor used by
CALayer.

UIBezierPath (Arrow) Adds amethod to generate an arrow shapewith a
bézier curve. Used for displaying user guidance.

UIImage (Zoom) Adds a method to crop an image to a rectangle
centred on the image centre, effectively zooming
in. Used to allow the user to zoom the camera
image.

UIScrollView (Cen

ter)

Adds methods to centre the content and zoom
to a particular size. Used for display of the origi-
nal image.

UIColor (CustomCol

ors)

Contrarily to Android, iOS possesses no Re-
sources framework, so this Category declares
some commonly used colours for the user inter-
face

UIView (Effects) Adds some animation methods to all views to
avoid repeating boilerplate code.

Table 4.3: Summary of categories

4.3.3 Categories

Code reuse in Objective-C can be accomplished by inheritance as in other object-
oriented languages. But when only one piece of behaviour is to be added, not over-
ridden9, the lightweight Category concept is often employed instead. A Category
on a class adds methods or properties to that class. The header file declaring the
category can be included by all clients that wish to make use of the modified or
added behaviour, and left out by all others. This way, no unnecessarily large class
hierarchy is created.
In this application, categories are used for different purposes. They are sum-

marised in Table 4.3.

9 The behaviour is undefined when a Category method has the same signature as one of the class (Ap-
ple Inc., 2014a)
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4.3.4 Computation Of Necessary Translation
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The computation of the necessary translation is im-
plemented by the PoseDifferenceEstimation
Operation class and was conceived to allow paral-
lelisation.
iOS supports differentAPIs for concurrency. Be-

sides manual thread creation, Grand Central Dis-
patch allows to easily dispatch blocks (function ob-
jects) to different kinds of dispatch queues. The
runtime automatically removes blocks from the
queues for execution. Dispatch queues can be se-
rial or concurrent and both synchronous and asyn-
chronous dispatch is possible as well as synchroni-
sation, but theAPI is not object-oriented and some
useful features are unavailable. It is not possible to

specify howmany blocks should be executed in parallel or to cancel tasks after sub-
mission. Since the application should make optimal use of the hardware due to
high computational demandwhile not queueing upmany tasks or tasks which are
obsolete, such functionality is desirable.
Operation queues—internally implemented with GCD10—sacrifice some effi-

ciency, but expose a more high-level object-oriented interface in which NSOpera
tion objects are submitted to NSOperationQueues and their maxConcurren
tOperationCount property limits the maximum number of concurrent opera-
tions. The application sets this limit to 3 for an iPad (assuming 3 cores like an iPad
Air 2) and 2 for iPhones, as the current devices possess two cores. Since there is
no concurrent modification of data and tasks are started in slow intervals, explicit
synchronisation is not needed.
A PoseDifferenceEstimationOperation is created with two images (one

of which will always be the first frame), a scale parameter for downsampling, and
computed values for the relative pose between first and reference frames and the
goal scale. Furthermore, a completion block is passed which can accept three
float parameters—one for the direction in the XY-plane, one for the ratio be-
tween reference and current world scale, and one for the magnitude of translation
along the optical axis. The intended purpose of this block is to drive some kind
of visualisation. The operation then computes the relative pose and the necessary
translation as in equation 3.5.
If Tcurrent,ref = (x,y, z)11, then the vector direction in the XY-plane is given by

α = atan2 (y, x).

Letd0 be the average distance of scene points to the first frame’s camera, computed
with the second frame, anddi the same with the current frame. The ratio of scales
r = di

d0
is used to scale the translation vector. di increases with decreasing distance

to the first frame (see Figure 3.2), which in turn (usually) means it should decrease

10 (Apple Inc., 2014b)
11 One should note that this calculation depends on the coordinate system. In OpenCV, the origin is

at the top left corner of an image, the positive x-axis is the image width, the positivey-axis the image
height and points downward. In a more canonical representation, the y-value thus may be flipped
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when approaching the target, since when done right, motion away from the first
frame is motion towards the original viewpoint.
The completion block is called with z, α and r.

4.4 hardware

The application has been developed on an iPad Air 2. This model features an A8X
processor with three cores and 1.5GHz per core.12 The number of concurrently
running PoseDifferenceEstimationOperations is thus set to three which
enables frequent updates of the visualisation. Images with 1077× 807 (full reso-
lutionwith a 0.33 scale factor) take roughly 0.7 seconds to process, so that updates
can be deliveredmore than once per second. The concurrent operation count is set
to two for iPhones owing to their smaller processing power and number of CPU
cores.

12 The number is not official and based on empirical tests (Primate Labs Inc., 2014)
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EVALUAT ION

The approach has been evaluated on two realistic datasets which can be found
in Appendix B. Computation was performed off-line on a computer with the
same C++ code running on the mobile device. The most important questions are
whether the directionof the necessary translation is correctly identified and its scale
decreasing with distance to the target. For both sets of images, the ground truth
translation between each image and the first frame has been measured with cen-
timetre accuracy, while the ground-truth rotation has been estimated from man-
ually labelled correspondence as it is difficult to measure without the proper in-
struments. For the case of noise-free correspondences in a non-degenerate config-
uration, relative pose estimation algorithms aremathematically correct. Therefore
estimating the true rotation like this has been deemed sufficiently accurate to evalu-
ate the procedure. For each image pair, 19–27 correspondences have been labelled,
of which the majority is used for pose recovery. For pose recovery, RANSAC is
used in conjunction with the five-point solver, a point is considered an inlier for a
given essential matrix if its distance to its epipolar line is nomore than three pixels,
the confidence threshold is 0.999. These parameters lead to themajority of points
being inliers of the pose recovery, the few outliers can be explained by imprecise
labelling.
In both data sets, the translation was mostly in the horizontal direction and

along the optical axis; the vertical translation is thus neglected. Similarly, rotation
was applied mainly around the vertical axis.
In order to idealise the condition, the reference photograph has been used to fill

the role of the second frame for world scale computation. In reality, since the ref-
erence location is unknown, the reference world scale is obtained from a position
somewhat off, thereby decreasing the accuracy of scale estimation.
The scale at which the relative pose is computed is referred to as s in all plots.

Besides the full resolution, the images are scaled downby a factor of 2 (both dimen-
sions are halved, resulting in quarter size) and 4 (sixteenth size). The resolutions
evaluated are thus 3264× 2448, 1632× 1224, and 816× 612.
The following graphics illustrate three things.

1. The difference between the computed necessary rotation and the actually
necessary one

2. The difference in direction of the computed necessary translation and the
actually necessary one

3. The correlation between the true ratio of distances obtained by measuring
camera movement and the average distance ratio computed with first and
second (or in this case reference) frames based on automatic feature match-
ing, at three different scales

40
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Table 5.1: Ground truth for the train data. Image 0 is the reference frame, translations and
rotations are given as in equation 2.11 relative to the reference frame.

Image Relative translation Relative Rotation ratio
number [x,y, z] [θx, θy, θz]

0 [0, 0, 0] [0, 0, 0] 1

1 [.9053, 0, .4246] [−3.3779,−9.3779, 1.05121] 3.8936
2 [.9986, 0, .0512] [−1.3274,−5.7134,−.1884] 1.6461
3 [.9993, 0, .0361] [−1.7156,−2.4761, .3469] 1.0965
4 [.9950, 0, .0995] [.054606,−4.4867, .2452] 1.0343

5.1 train station data set

In this series, the camera was moved horizontally from the reference to the right
while also coming closer to the building. A schematic bird’s eye viewof the captures
is shown in Figure 5.1. Table 5.1 summarises the ground truth for the five images.
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234

first frame
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x

y

Figure 5.1: Schematic representation of the Train Station data set. Lengths and angles are
not precise.

5.1.1 Scale Estimation

Figure 5.2 showshow the average distance of points to the first frame’s camera varies
with the second image used for triangulation. The plot illustrates that—especially
at full resolution—the ratio based on feature matching closely mirrors the real
value. The difference increases with decreasing image scale, but the slope of the
graphs is quite similar. This shows that indeed with increasing distance to the first
frame, the ratio decreases. This allows a deduction as to how close the camera is
to the target, at least with respect to previous iterations, which is the primary ob-
jective. The decrease in ratio closely correlates with the decrease in distance which
is apparent on inspection of Figure 5.1. For instance, the viewpoints 3 and 4 are
much closer together than e.g. 2 and 3, and the difference in ratios is much smaller
between 3 and 4 as well.
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Figure 5.2: Train Station data set: Evolution of the distance ratio between images

The correlation is higher for AKAZE features than for SIFT ones, where a
strong spike for image 1 can be observed. For SIFT, the decrease of ratio between
images 2 and 3 is also hardly visible at s = 2. The unusual spike for image 1 poses
the problem that the visualisation would tell the user that they need to move
disproportionally far compared to the other images. Since the error in this case is
confined to image, this may not be a big problem, but will affect user experience.
For SIFT features, one can also observe that the scale of the images appears to be
less relevant, possibly an indication for the better scale invariance of the descriptor.
Generally, it can be concluded that on this data set, AKAZE features are an ap-

propriate means of estimating the scale of relative camera translation.

5.1.2 Rotation Estimation

Figure 5.3 and Figure 5.4 illustrate the difference between the actually necessary
camera rotation and the computedone forAKAZEandSIFT features, respectively.
Rotations about the optical and X axes are small and thus not very interesting and
the deviation is small.
Focusing on the Y-rotation, it is obvious that the estimation quality decreases

especially for s = 4, but the difference does not exceed 5 degrees and thus the
estimate is usable. In particular, for reasonably quick updates mostly the direction
of necessary rotation is important, not the absolute magnitude.
The performance of SIFT is even better for scales s = 1 and s = 2, but slightly

worse on the smallest scale (see Figure 5.4c).

5.1.3 Translation Estimation

Finally and most importantly, the directions of the necessary translation must be
evaluated. Figure 5.5 plots the angular difference in degree between the actual nec-
essary translation and the computed one. The reference frame 0 is omitted since
its translation relative to itself is (0, 0, 0).
It is obvious that the estimates are completely useless, the difference exceeds 80

degrees in all cases. With these estimates, the user will be sent into an entirely
wrong direction. For an explanation of this failure refer to Section 5.3.



5.1 train station data set 43

0 1 2 3 4
−10

−5

0

Image Number

R
ot
at
io
n
an
gl
es

Trueθx
Trueθy
Trueθz
θx
θy
θz

(a) s = 1

0 1 2 3 4

Trueθx
Trueθy
Trueθz
θx
θy
θz

(b) s = 2

0 1 2 3 4
−10

−5

0

Trueθx
Trueθy
Trueθz
θx
θy
θz

(c) s = 4

Figure 5.3: Train Station data set: Angles of rotation relative to reference with AKAZE
features on full, quarter and sixteenth resolution
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Figure 5.4: Train Station data set: Angles of rotation relative to reference with SIFT fea-
tures
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Figure 5.5: Train Station data set: Angular difference between actually necessary transla-
tion and algorithmic estimate
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5.2 manor data set

Seven images (including the reference photo) have been taken with movement to
the right and backwards as well as forwards. The motif was always centred in the
frame, thus there is prominent rotation around the y-axis. The schematic posi-
tions for the sevenmanor captures (including reference photograph) are shown in
Figure 5.6 (note that here the image number decreases with distance from the first
frame).
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Figure 5.6: Schematic representation of the Manor data set. Lengths and angles are not
precise.

In contrast to the train station set, there is more significantmovement along the
optical axis. The ground truth data is summarised in Table 5.2.

Image Relative translation Relative Rotation ratio
number [x,y, z] [θx, θy, θz]

0 [0, 0, 0] [0, 0, 0] 1

1 [1, 0, 0] [−1.7857,−5.4827, 2.1073] 1.1401
2 [0.8944, 0., 0.4472] [−2.1428,−6.5773, 1.6584] 1.3437
3 [0.7071, 0., 0.7071] [0.7263,−5.0686, 2.6176] 1.3254
4 [0.8479, 0.,−0.5299] [−1.4146,−10.7998, 2.2250] 1.5168
5 [0.9284, 0., 0.3713] [−0.1887,−16.6670, 1.2211] 2.5495
6 [0.9363, 0.,−0.3511] [−0.8725,−18.0933, 1.5385] 2.0155

Table 5.2: Ground truth for the manor data. Image 0 is the reference frame, translations
and rotations are given as in equation 2.11 relative to the reference frame.

5.2.1 Scale Estimation

The evolution of the translation scale is shown in Figure 5.7. It is apparent that
the movement purely along the optical axis between images 2 and 3 is a problem.
As the real distance to the target marginally increases, so should the ratio, but it
decreases instead. Frames 5 and 6 illustrate a problem with the scale estimation
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Figure 5.7: Manor data set: Evolution of the distance ratio between images

procedure itself. For it to work precisely, only movement along the line between
first and reference frames is assumed, as a decreased distance to the first frame is
interpreted as an increased distance to the reference frame, which is not necessarily
the case as shownhere (see Equation 3.4). Even the “ground truth” computed from
actual camera distances is thus of limited use. In reality, the assumption is justified
that the user will move between first, second and reference locations in a more or
less straight line, with more movement to the sides than front or back.
For the AKAZE descriptor, only the full resolution comes reasonably close in

magnitude and somewhat in slope. With SIFT, the slope is more accurately repro-
duced with s = 2, but strangely less accurately on full resolution. It is possible
that the reduction in noise brought about by downsampling can improve the esti-
mate, but the other experiments do not show it. For the smallest scale, the estimate
degenerates strongly.
In general is can be stated that the estimates are less close than those for the train

data set, but also that large movement along the optical axis shows the limits of
this simple approach at scale estimation. Realistically, the user will not move as
erratically so this kind of scenario is extreme.

5.2.2 Rotation Estimation

Figure 5.8 and Figure 5.9 illustrate how accurately the necessary rotation is com-
puted. On this data, AKAZE outperforms SIFT with default parameters (see Ta-
ble 4.1). On both full and half scale, there is negligible deviation from the truth,
but on quarter scale, there are more than 5 degrees of difference and a complete
failure for frame 3 (the direction is wrong, not only the magnitude).
With default parameters (Table 4.2), SIFT compares much worse, particularly

on full resolutionwhere it grossly overestimates the necessary rotation. The results
are better on the scaled-down images, possibly because of the reduction of noise,
but still only partly useful on the smallest resolution.

5.2.3 Translation Estimation

Lastly, the direction of necessary translation is evaluated in Figure 5.10. It is moot
to discuss any improvement in comparisonwith the train data set, as the results are



5.2 manor data set 47

0 1 2 3 4 5 6
−20

−10

0

Image Number

R
ot
at
io
n
an
gl
es

Trueθx
Trueθy
Trueθz
θx
θy
θz

(a) s = 1

0 1 2 3 4 5 6

Trueθx
Trueθy
Trueθz
θx
θy
θz

(b) s = 2

0 1 2 3 4 5 6
−20

−10

0

Trueθx
Trueθy
Trueθz
θx
θy
θz

(c) s = 4

Figure 5.8: Manor data set: Angles of rotation relative to reference with AKAZE features
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Figure 5.9: Manor data set: Angles of rotation relative to reference with SIFT features



48 evaluation

also completely false, SIFT displaying a larger variance than AKAZE, but neither
are useful.
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Figure 5.10: Manor data set: Angular difference between actually necessary translation and
estimate

5.3 summary

Of the three pieces of information needed for user guidance, only the most impor-
tant one—the direction of translation—cannot be recovered to any satisfying de-
gree with this method. Both scale and necessary camera rotation estimation work,
at least if themovement over iterations is mostly horizontal and not along the opti-
cal axis. A principal problemwith the estimation of necessary translation could be
observed. If the movement is mostly in one direction and the translation between
reference and current frame is computed as in equation 3.5

−Rref,firstR
T
current,firstTcurrent,first + Tref,first

then both summands will have mostly the same orientation which will conse-
quently be zeroed out by the sign inversion of the first one. If the resulting vector
is then normalised to unit length to be scaled with the appropriate factor, the
other two dimensions will have nonzero values. These are determined by small
differences in the vectors’ orientation and thus by noise and hence the sum will
point into a completely wrong direction. It is evident that this solution cannot
work for movement in only one principal direction as will most often be the case
in rephotography.
Two possible approaches to circumvent this issue come to mind.

1. One could scale each summand before the additionwith the inverse of its re-
spectiveworld scale (that is the scale computedwith current and first frames,
and the scale computed with reference and first frames). As the world scale
(computed as the average distance of points to the camera) is inversely pro-
portional to the camera distance and thus the length of the translation vec-
tor, the summands may be scaled to better represent reality.

2. The comparison of object distances across iterations is an indirect measure
for the camera distance and was shown to be fallible when the movement
deviates strongly from the line between first and reference frame locations.
Another idea is to relate all iterations via the computed 3D coordinates of
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the scene objects. For this, 3D coordinates can be triangulated from the first
and second frames to create a scene representation in the first frame’s co-
ordinate system. Then, assuming the object coordinate system is the first
frame’s coordinate system, the Perspective-n-Point (PnP) problem can be
solved with the object points and their corresponding image points in the
reference frame (i.e. their projections into the first frame). Theproblemcon-
sists in finding a camerapose from3D-2D-point correspondences and canbe
solved for instance with Levenberg-Marquardt optimisation of the projec-
tion matrix P = [R | T ].1 Thus one obtains Tref,first with some scaling—not
necessarily unit length. The procedure can be carried out in each iteration
with the precomputed object points and their correspondences in the cur-
rent frame, obtaining Tcurrent,first. This will require caching the first frame’s
keypoints to keep themconstant, just as the object points are constant. Since
the 3D scene coordinates stay the same, a consistent scale of the translation
vectors should be the result.

Both approaches will be evaluated in future work.
It could also be demonstrated that AKAZE features yield the more accurate

results, except on the smallest scale, where SIFT compares somewhat favourably.
The smallest scale however also leads to general deterioration in quality, suggest-
ing that a scale factor between 2 and 4may be required to combine accuracy with
speed of processing.
Improvements for all estimates could possibly be achieved by fine-tuning the

parameters of both descriptors to adapt them to scenes with buildings, which has
not been tried here.

1 OpenCV supplies the solvePnP function for this purpose, implementing various algorithms in-
cluding the LM-optimisation or more efficient solvers like (Lepetit et al., 2009)



6
APPL ICAT ION EVALUAT ION , OUTLOOK & FUTURE
WORK

6.1 extensions

Historic Images

Some features from Bae et. al’s work have been simplified away, so that currently,
no really historic photograph can be used. The app should therefore be extended
with another view controller presented after first and second frames have been
taken, in order for the user to label correspondences. These correspondences can
be used to fit a homography between the two views and warp one of them accord-
ingly.

Real-time User Guidance

A higher rate of processing could be achieved by also using fast feature tracking
between robust pose estimations where the AKAZE detector is run. Bae et al.
use Lucas-Kanade-Tomasi tracking for this (Lucas and Kanade, 1981; Tomasi and
Kanade, 1991), anOpenCV implementation is already available. During automatic
capture, it can be observed that the found features often change abruptly between
successive frames. This and the fact that the number of found features changes
strongly results in the scale estimation jumping rapidly. A feature tracking may in-
crease the stability as the already-found points are found again, instead of radically
different ones.

Rephoto Postprocessing

It is likely that despite all assistance, the user will not manage to perfectly line up
the original photographwith the current camera picture. In order to better register
the original and final images, the latter can bewarped according to the last pose dif-
ference estimate. Bae et. al use an infinite homography during the homing process,
but the same method can be used after the final capture. The infinite homogra-
phy is the one between two views induced by the plane at infinity, i.e. the set of all
projective points (x,y, z, 0) and maps vanishing points in one view onto vanish-
ing points in the other. Details can be found in (Hartley and Zisserman, 2004, ch.
13.4). Given the calibration matrices of both views and their relative rotation, the
homography can be computed and one image can bewarpedwith it by remapping
the pixels.

Other Visualisation Options

Bae et al. (2010) explored different ways of guiding the user. A side-by-side view or
a linear blendwith the original photowere less helpful than the arrowvisualisation,
but one could imagine offering different kinds, such as a three-dimensional arrow

50
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which shows both parts of the necessary translation. A more sophisticated idea is
to project an approximation of the correct location into the camera picture, but
this would require a more detailed reconstruction of the scene.

Online Platform

It is envisioned to create an online community where rephotographs can be up-
loaded by users. There are web applications dedicated to rephotography already,
for example Third View, a project directed by Mark Klett dealing mostly with re-
peated captures of geographical landmarks, not man-made structures (Klett et al.,
2004). However, it is a documentation project and not community-driven. In con-
trast, the aforementioned Timera app also comes with a community where users
can upload their rephotos which are then presented in the same fashion as in the
app itself, or old photos for others to use as a reference.
A platform letting users upload their pictures is also the subject of another the-

sis by Weber (2015). The web service developed in this work sports the following
features.

• Users can upload, rate and comment on rephotographs.

• Rephotos can be viewed in detail in an overlay and a slidermasks the images
just as in the iOS app presented here.

• Rephotos can be tagged with metadata, including time, location or title.

• Rephotos can be filtered by timespan between the two images, the geo-
graphic location and the category.

• A map displays the locations for which users have shared their rephotos.

• The two images can be registered in theweb form via identification of corre-
sponding points. With OpenCV, a homography is estimated to better regis-
ter the images.

The web service supplies an application programming interface of which the
mobile app should make use in the future. Rudimentary provisions have been
made, but the authentication must be implemented and the HTTP request
adapted to interface with the server.

6.2 usability & performance

The focus of this work was the theoretical exploration and evaluation of Bae et.
al’s approach to computational rephotography, not the design of a release-ready
application. As such, some functionality is missing and the app is not extensively
tested. Notable shortcomings are the following.

1. In the gallery inside the app, the final captures of each rephoto are shown as
thumbnails. Should multiple rephotos be based on the same original, they
will be indistinguishable. The thumbnails should be made more meaning-
ful.

2. Deletion of rephotos works via the user’s gallery, where the rephoto album
created by the app is visible. Deletion will leave invalid entries in the
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database which should be cleaned up by the app. More reasonably perhaps,
deletion should be offered inside the app.

3. The upload of rephotos is experimentally hard-coded to work with a test
server and is a blocking request.

4. To enhance user experience, a choice between different overlays should be
offered, where at this time only an edge overlay is implemented. The edge
overlay could also be made more helpful by post-processing it into a more
distinctive subset of lines to removenoisy clutterwhen fine-grainedpatterns
are present (e.g. vegetation).

5. All frames are matched with the first frame, so it would suffice to compute
the keypoints once and reuse them. Currently, the first frame’s keypoints
are recomputed for every relative pose estimation.

6. The application requires iOS 8, but actually has few dependencies on it.
The user interface employs UIVisualEfffectViews which were previ-
ously unavailable. It should be fairly straightforward to create versions of
the UI without these elements.

7. Currently, the calibration data cannot be loaded from a user-supplied file.
Ideally, since not all devices will have the exact same camera characteristics,
each user would have to individually calibrate their camera.

8. The rephotographymakes use of the simpleUIImagePickerController
which is presented modally. This makes the flow of the app less seamless.
For instance, when the PhotoChooserController is presented and the
user loads a reference image, the image picker will pop up, but upon image
selection, one is not immediately shown the camera, but is briefly shown
the photo chooser again before the rephoto starts with yet another UIIm
agePickerController (this time in cameramode instead of gallery). Fur-
thermore, the possibility to modify the camera stream is limited to affine
transformations, which precludes projective transformation. Thiswould be
necessary to implement the image warping used by Bae et al. (2010). Also,
images are captured by a timer. It would be more intuitive to attempt to
process frames as they come and simply drop them if no CPU time is avail-
able which would also scale more easily to other devices. Both could be ac-
complished by rebasing the app on themuchmore customisable AVFounda
tion framework which gives more low-level access to the device’s camera at
the cost of significantly more development effort. For this, OpenCV wrap-
pers exist already which would simplify processing the frames.

9. The application has only been tested on a single device. While it should
work on iPhones as well, this could not be tested and some tuning may be
necessary.

10. The application creates a photo album for the rephotos with the name
Rephoto-Album, without checking if it already exists.

11. Every finished rephotograph is saved. There should be an option to discard
an attempt in the result view.
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CONCLUS ION

This thesis presented an attempt at retrieving the location of a photograph with
the help of image processing. After introducing the basic geometry underlying
world-to-image mapping and the geometry relating two views of a scene, a com-
putational approach developed by Bae et al. (2010) has been presented. Structure-
from-motion is used to compute the motion between two captures of the same
scene and infer the original viewpoint from the reference photo and two images of
the current scene. The theoretical and practical problems have been highlighted,
including such scenes which do not allow determining the relative pose of cameras
viewing them and how to acquire matching points in two images. Algorithms to
solve the pose recovery problem have been introduced.
Evaluation on two real scenes revealed that only two elements—the necessary

camera rotation and the closeness to the goal—showpromising estimates with this
approach. The direction of necessary translation could not be recovered with this
method. Since this aspect is not further documented inBae et. al’swork, itwarrants
further investigation.
An implementation of most of the ideas as a mobile application has been pro-

totyped and described, being the first of its kind despite not being as functional as
intended. The application requires the user to load an image, instructs them two
capture two images of the scene and then visualises an estimate for the necessary
motion with two arrows, one for the sensor plane and one for the optical axis. Fur-
ther assistance is provided by overlaying the edges of the original image over the
current camera picture, making the application useful despite the failure of the ar-
row visualisation. When the final image is captured, the app lets the user review
the rephoto. A slider is used to mask the old over the new image and the change
of the scene can be dynamically visualised. Rephotos are saved to the gallery to be
viewed at a later time.
It must be concluded that the original objective could not be achieved in its en-

tirety and the application is currently not more useful than existing approaches.
With an edge overlay, it can still help a user in capturing rephotographs, although
they still need to determine the necessarymotion on their own. There is hope how-
ever, that a solution to the translation problem can be found and implemented in
the future, increasing the capabilities of the app.
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Some bugs in the SDK have been discovered in the making of the software.

1. When using UIImagePickerController in camera mode with disabled
camera controls—necessary to provide custom controls—zooming and
then rotating the device will create a black bar at one side of the image.
Rotating back will remove it but hide the otherwise visible zoom level
indicator. It is necessary to implement a manual zooming and apply an
appropriate transform to the camera stream. The bug ID is 20992021. The
issue is claimed to be fixed in iOS 9.1

2. When all images from the app-created rephoto albumare deleted, the album
will not be shown in the gallery anymore, but ALAssetsLibrary does not
permit adding images to it or recreate an album of the same name. Since
developers are encouraged to move to the more recent Photos framework,
this problem is not likely to get fixed.

3. It is not feasible to support background and foreground transitions while
using a timed capture on UIImagePickerController as has been done
here. If the app becomes inactive while an image is being captured, it
appears as if sometimes the data is released and therefore unavailable when
transitioning back to the foreground. This results in an exception being
thrown, which the developer can do nothing about, except avoid UIIm

agePickerController for timed capture. The bug ID is 19953748. The
issue is claimed to be fixed in iOS 9.2

1 Correspondence with Apple
2 Correspondence with Apple
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APPEND IX B — DATA SETS

The images used for the evaluation in Chapter 5 can be found here. The captions
relate the images to their position in the bird’s eye view from that chapter.

b.1 train station data set

(a) 0: The “reference” image (b) 4 (c) 3

(d) 2 (e) 1 (f) First frame

Figure B.1: Images in the train station data set
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b.2 manor data set

(a) 0: The “reference” image (b) 1 (c) 2

(d) 3 (e) 4 (f) 5

(g) 6 (h) First frame

Figure B.2: Images in the manor data set
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